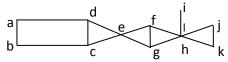
Code: 9F00104


MCA I Semester Regular & Supplementary Examinations, March 2013 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

Time: 3 hours

Max Marks: 60

Answer any FIVE questions All questions carry equal marks

- 1 (a) Obtain the principal disjunctive normal form of $(p \land q) \lor (7 P \land R) (q \land R)$.
 - (b) Define and explain implication and Bi-implication with an example for each.
- 2 (a) Determine whether the conclusion 'C'. is valid in the following, when H₁, H₂ are premises:
 (i) H₁: PVQ H₂, P → R H₃: Q → R C : R.
 (ii) H₁: P → (Q → R) H₂ : R C : P.
 - (b) Discuss about free and bound variables.
- 3 (a) Let A = { 1, 2, 3, 4, 5} and B = { 1, 3, 5}. Let R be the relation from A \rightarrow B defined by " X is greater than Y". Write relation R, its matrix and draw its graph.
 - (b) Define lattice. Explain its properties.
- 4 (a) Let (G, +) and H,Δ) be groups and $g: G \to H$ be a homomorphism. Prove that Kernel of g is a normal subgroup of G.
 - (b) Define group. Explain the four axioms of a group.
- 5 (a) State and prove binomial multinominal theorem.
 - (b) State inclusion exclusion principle and discuss its applications.
- 6 (a) Solve the recurrence relation: (i) $d_n = 2d_{n-1} - d_{n-2}$ with initial conditions $d_1 = 1.5$ and $d_2 = 3$. (*ii*) $b_n = 3_{b_{n-1}} - 2b_{n-2}$ with initial conditions $b_1 = -2$, $b_2 = 4$.
 - (b) Define characteristics function.
- 7 Derive BFS for a tree and DFS spanning trees for the following graph

- 8 (a) Find the chromatic number of:
 - (i) A bipartite graph $K_{3,3}$. (ii) A complete graph K_n .
 - (b) Explain isomorphism of graphs with a suitable example.